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1 Introduction

The multiplication M of a multiplying object can be determined by analyzing the arrival times of thermal
neutrons in detectors such as helium tubes. A source emitting neutrons randomly will lead to neutron inter
arrival times obeying Poisson process statistics. By observing how the inter arrival times of detected counts
differ from Poisson statistics, one can assess properties of the neutron source such as the source intensity
and multiplication.

While the method of analyzing the inter arrival times of neutrons using count distributions to determine
characteristics of the source has been used for a long time, the treatment of the errors on the determined
quantities multiplication M and source strength S have not yet been adequately treated. This object of this
report is to assess these errors.1

2 Methodology

To compute the multiplication M and the source strength S of an object, we first divide the data stream into
N non overlapping segments of equal width T. By counting the number of detected neutrons in each of the
segments, we can build a count distribution. Normalizing this count distribution by the number of segments
N, we getbn(T ), the probability of gettingn counts in a time gate T. A typical count distribution is shown
in Fig. 1 for T=512µseconds.

Figure 1: Example of a random time gate count distribution with T=512µseconds

1This document was prepared as an account of work sponsored byan agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall notbe used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.
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We assume that each data point in the count distributionbn is a binomially distributed random variable,
so that if we define

Cn = Nbn + εn (1)

whereεn is the error on the data point, the variance on each point is

var(bn) = 〈ε2
n 〉 = Nbn (1−bn) (2)

where∠.〉 stands for taking the ensemble average over a number of experiments. Another quantity of
importance is the covariance between the errorsεn on differentbn. Given the constraint that theCn are
bound by

∞

∑
n=0

Cn(T ) = N (3)

the sum of all the errorsεn is zero for any given experiment. Therefore, there exists a negative correlation
between the errorsεn, an increase in one component requires a decrease in anothercomponent. It can be
shown (as in Ref. [1]) that the covariance between these errors is

〈εn1εn2〉 = −Nbn1bn2 (4)

The first moment of the count distributionbn is the average number of events counted in a fixed time
gate width T:

C(T ) =
∞

∑
n=0

nbn(T ) (5)

The variance on this number can be calculated by propagatingthe errorsεn on thebn distribution via Eq. 5:

C =
1
N

∞

∑
n=0

nCn

=
1
N

∞

∑
n=0

n(Nbn + εn)

= C +
1
N

∞

∑
n=0

nεn (6)

(7)

For the sake of clarity later in the text, we define

δC = C−C =
1
N

∞

∑
n=1

nεn (8)

Squaring C in Eq. 7, we get

C2 = C
2
+2

C
N

∞

∑
n=0

nεn +
1

N2

(

∞

∑
n=0

n2ε2
n +2 ∑

n1<n2

n1n2εn1εn2

)

(9)
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Taking the ensemble average over a number of experiments, the averages of the individual errorsεn are
equal to zero (〈εn〉 = 0) and we thus have

〈C2〉 = C
2
+0+

1
N2

(

∞

∑
n=0

n2Nbn (1−bn)−2N ∑
n1<n2

n1n2bn1bn2

)

(10)

where we have used Eqs. 2 and 4. Redistributing the terms, we finally get the variance on C:

〈
(

C−C
)2
〉 = 〈C2〉−C

2

=
1
N





∞

∑
n=1

n2bn −

(

∞

∑
n=0

nbn

)2




C̄(T ) is plotted as a function of the time gate width T as in Fig. 2. The variance on̄C is so small that the
error bars can not be seen on the graph without zooming in.

Figure 2: First moment of the random time gate count distribution as a function of the time gate width

Knowing that the first moment is also equal to

C(T ) = ε
(

M−
M−1

ν

)

ST

= R1T (11)

where S is the source strength in neutrons per second, the count rateR1 can be extracted by fitting the points
in Fig. 2 with the straight line given by Eq. 11.

The Feynman varianceY2F(T ) of bn is defined as

Y2F(T ) =
Y2(T )

C(T )
(12)
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where

Y2(T ) =
∞

∑
n=0

(

n
2

)

bn(T )−
∞

∑
n=0

(

n
2

)

Pn(T ) (13)

andPn(T ) is the Poisson probability of getting n counts within time gate T for the count rate determined
above. The second combinatorial moment of the Poisson probability will be derived first (Pn(T ) will be
replaced byPn for the sake of simplicity):

∞

∑
n=2

(

n
2

)

Pn =
∞

∑
n=2

(

n
2

)

Cn

n!
e−C

=
1
2

∞

∑
n=2

Cn

(n−2)!
e−C

=
C2

2

∞

∑
m=0

Cm

(m)!
e−C

=
C2

2

The variances onY2(T ) andY2F(T ) will be derived in turn:

Y2 =
1
N

∞

∑
n=2

(

n
2

)

Cn −
∞

∑
n=2

(

n
2

)

Pn

=
1
N

∞

∑
n=2

(

n
2

)

Nbn +
1
N

∞

∑
n=2

(

n
2

)

εn −
C2

2

=
1
N

∞

∑
n=2

(

n
2

)

Nbn +
1
N

∞

∑
n=2

(

n
2

)

εn −
1
2

(

C +
1
N

∞

∑
n=1

nεn

)2

=
1
N

∞

∑
n=2

(

n
2

)

Nbn −
C

2

2
+

1
N

∞

∑
n=2

(

n
2

)

εn −
C
N

∞

∑
n=1

nεn −
1

2N2

(

∞

∑
n=1

nεn

)2

where the last term is of 2nd order and can safely be ignored.

Y2 = Y2 +
1
N

∞

∑
n=1

[(

n
2

)

−Cn

]

εn (14)

For the sake of clarity, we define

δY2 = Y2−Y2 =
1
N

∞

∑
n=1

[(

n
2

)

−Cn

]

εn (15)
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We now turn to calculating the variance onY2F(T )

(

Y2F −Y2F
)2

=

(

Y2

C
−

Y2

C

)2

=

(

(

Y2 + δY2
)

C−Y2
(

C + δC
)

CC

)2

=

(

δY2C−Y2δC

CC

)2

=
δY 2

2 C
2
+Y2

2δC2−2δY2CY2δC
(

CC
)2

=
δY 2

2

C2 +
Y2

2δC2

C2C
2 −2

δY2Y2δC

CC

Neglecting higher order terms, we get

(

Y2F −Y2F
)2

= Y2F
2

(

(

δY2

Y2

)2

+

(

δC
C

)2

−2
δY2δC

Y2C

)

(16)

SubstitutingδC andδY2 by their expressions and taking the ensemble averages, we get

〈
(

Y2F −Y2F
)2
〉 =

Y 2
2F

N2 [

〈

(

∑∞
n=1

((

n
2

)

−nC

)

εn

)2

〉

Y2
2

+
〈(∑∞

n=1nεn)
2〉

C2

−2
〈

(

∑∞
n=1

(

n
2

)

−nC

)

εn ∑∞
n=1nεn〉

Y2C
] (17)

Fig. 3 shows the Feynman varianceY2F computed for a simulation.Y2F as well as its variance are
computed as many times as the number of time gates using Eq. 12and 17, respectively.

The analytical expression forY2F(T ) from the point model theory is

Y2F(T ) = ε
(

M−
M−1

ν

)

(D2s +(M−1)D2)

(

1−
1− e−λT

λT

)

(18)

The asymptote of this expression is

R2F = lim
T→∞

Y2F(T ) =

(

M−
M−1

ν

)

(D2s +(M−1)D2) . (19)

The green curve in Fig. 3 shows the fit to the Feynman varianceY2F(T ) using Eq. 18. The fit parameters
λ andR2F along with their standard deviation are shown in the figure. OnceR2F is known, Eq. 19 can be
used to determine the value of the multiplication M along with its standard deviation.

In summary, if we know the californium source strength, we can determine the efficiencyε and multi-
plication M from Eqs. 11 and 19.
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Figure 3: Feynman varianceY2F(T ), fit by Eq. 18

3 Assumptions made for the analysis

For the analysis, we will assume that we know the source isotope (252C f ) and its strength (1.2×106 neu-
trons/second). We will also assume that the source is surrounded by some multiplying medium. We will pick
uranium, in which235U multiplies the number of neutrons by inducing fissions. Given that the simulation
was performed with no multiplying medium around the object,the analysis should tell us that the system
was actually not multiplying, that its multiplication M was1.

4 Nuclear data

Equations 11 and 18 contain several parameters that need yetto be discussed.̄ν is the average number of
neutrons emitted per induced fission, and is equal to 2.52 for235U . ν̄s is the average number of neutrons
emitted per spontaneous fission. In the case of californium-252, ν̄s = 3.77. D2s is the ratio of the second
combinatorial moment of the spontaneous fission neutron number distributionν2s to ν̄s. D2 is its counterpart
for induced fission.ν2s = 6.02 for 252C f , while ν2 = 2.55 for 235U .

5 Simulations

Nine simulations of the same californium-252 neutron source in 6” of polyethylene were carried out with
different random number generator seeds with MCNPX. Each simulation was 10 minutes long. Helium-3
tubes were placed around the polyethylene to capture the thermal neutrons. Neutrons are captured by3He
via the reactionn(3He, p)3H. The capture time tags were saved in list-mode in 9 output files. These files
were subsequenlty analyzed using the method explained in section 2 and the assumptions in section 4.
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6 Overlapping time gates

The time tagged data was analyzed different ways. Because the analysis for the first 2 cases differs greatly
from the analysis for the last 3 cases, we will discuss them separately.

For the first 2 cases, we use the original method of analysing the data, which was originally constrained
by the hardware available at the time. The data stream was sliced into N segments of equal widths (512µs
for instance). Counting the number of counts in the first microsecond of each one of these N segments,
one can build a count distribution for a gate width of 1µs. An example of such a distribution was shown in
Fig. 1. Counting the number of counts in the first two microseconds of each one of these N segments, one
would build a count distribution of gate width 2µs, and so on, until we get 512 different count distributions.
Of course, because the count distribution for the 2µs time gate used in part the same data as the count
distribution for the 1µs time gate, the 2µs count distribution was not independent from the 1µs count
distribution, and so on for all the time gates. The moments ofthe count distributions were then computed
and fit with Eqs. 11 and 18. The standard deviation onR2F was taken to be equal to the standard deviation
on the last time gate (the 512th time gate). This choice for the standard deviation was not a choice of the
author, but the method conventionally used.

6.1 512 time gates in arithmetic progression from 1 to 512µs

Using 512 time gates increasing arithmetically from 1 to 512µs in increments of 1µs, we get the results in
Table 1 for the 9 simulations:

simulation M M range 1/λ [µs]

1 0.998267 [0.961865:1.034644] 192.9
2 1.268506 [1.232080:1.304907] 296
3 0.731006 [0.694775:0.767261] 163.1
4 1.000122 [0.963721:1.036523] 193
5 1.005347 [0.968994:1.041699] 215.5
6 1.419678 [1.383496:1.455859] 338.7
7 1.297363 [1.261328:1.333374] 279.5
8 0.853955 [0.817627:0.890308] 176.3
9 0.945630 [0.909131:0.982129] 191.6

Table 1: Multiplication for 9 different simulations using 512 time gates in arithmetic progression from 1µs
to 512µs.

The 3rd column gives the range of multiplication M obtained usingR2F +/−σ . One should note that the
values of the multiplication M were in no way constrained to be greater than 1, as they should be physically.
M was computed mathematically by solving the 2 equations above.

6.2 512 time gates in arithmetic progression from 4 to 2000µs

We observe in Table 1 that the time constantλ−1 is of the order of 200µs. To get a more accurate value of
M, it would be better to compute the Feynman variance on a timegate range that goes at least up to 10 times
λ−1. Indeed, while 512µs is not high enough to get a good fit forY2F(T ) when theλ−1 time scale is of
the order of 200µs, 2000µs should be sufficient. Given that each 2000µs segment is 4 times longer than
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the previous 512µs, the number of samples in the new count distributionbn will be decreased by a factor 4.
Using 512 time gates increasing arithmetically from 4 to 2000 µs in increments of 4µs, we get the results
in Table 2:

simulation M M range 1/λ [µs]

1 1.11333 [1.039648:1.187012] 231.9
2 0.996387 [0.922697:1.070190] 180.7
3 0.925586 [0.852686:0.998462] 206.9
4 1.11333 [1.039648:1.187012] 232.0
5 1.076636 [1.003296:1.150000] 229.4
6 1.057666 [0.984082:1.131201] 253.7
7 0.955396 [0.882080:1.028711] 209.3
8 0.846191 [0.773462:0.918945] 139.0
9 1.018555 [0.945703:1.091382] 205.5

Table 2: Multiplication for 9 different simulations using 512 time gates in arithmetic progression from 4µs
to 2000µs.
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Figure 4: Multiplication ranges for the two different gate width ranges

Several observations need to be made on Fig. 4, which shows the range of the multiplication M obtained
for the two choices of time gate ranges. The larger time gate range results in multiplications much closer to
the true value of 1 than the shorter time gate range. Also, thespread of the multiplication M is much narrower
for the longer time gate range. As a conclusion, a good choiceof time gate range based on the value ofλ−1

is important. One should note however that the number of multiplication intervals including the right answer
M=1 is 3 and 4 for the short and larger time gate ranges, respectively, which is less than the expected value
of 0.68∗9 = 6 for a 1 sigma confidence interval. The standard deviation onthe multiplication seems to
be too small, which is not surprising, given that the standard deviation onR2F was taken to be equal to the
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standard deviation on the last time gate ofY2F(T ), which is incorrect. The rest of this report revisits the way
the standard deviation onR2F is estimated.

7 Non-overlapping time gates

One of the deficiencies of the method used above was that the same data was used over and over to compute
the count distributions for all the time gates. Therefore, all the points along theY2F(T ) were correlated and
it was difficult to the standard deviation on the fit parameters M andε correctly.

Instead of reusing the same data over and over for the different time gates, we now propose to compute
each count distribution from its own data segment, and this data segment will not be used by any other
count distribution. This is how the algorithm is implemented in practice. The first task is to choose a set
of time gate widths for which we wish to compute count distributions. In the 3 examples below, we picked
57, 60 and 63 times gates widths ranging from 1 ns to 524µs, 1048µs, and 2096µs, respectively. As
the data arrives, we first pick randomly which time gate to open. Once a time gate of width T has been
chosen, we count how many events arrive within the time interval T, and update the corresponding count
distribution. We then pick another time gate randomly for the next data segment. Thus, we get a number of
count distributionsbn that will have been built from different sets of the entire data stream.Y2F can then be
computed for each of these count distributionsbn. Because each of theseY2F values will be independent of
each other, we can use Minuit [2] to fit the data with Eq. 18. Minuit will also produce the standard deviations
around the fit parameters M andλ−1. This could not be done using the other technique and independence
between the data points is required for the standard deviation to be computed correctly.

N.B.: After doing this work, I realized that it would be more adequate for the smallest time gate
to be 1µs instead of 1 ns. Anything below 1µs (let alone 1 ns) makes no sense for thermal neutrons.
Also, using 1 ns in general breaks the assumption in the point-model theory that the fission chain
neutrons are all emitted instantaneously compared to the diffusion time scale of the neutrons through
the surrounding material to the detector. While this is not aproblem with 252Cf, because there are no
induced fissions and we can assume that the spontaneous fission neutrons are emitted instantaneously
compared to the 1 ns ”diffusion time scale”, this would lead to problems for multiplying systems.

7.1 57 non-overlapping time gates in geometric progressionfrom 1 ns to 524µs

Using 57 non overlapping time gates increasing in size usinga geometric progression from 1 ns to 524µs,
we getY2F shown in Fig. 5 for the first (out of nine) simulation. The datais fit by Eq. 18, and the standard
deviations onλ−1 andR2F shown in the figure are computed by Minuit.

The results for the 9 simulations are summarized in Table 3:
We observe in Table 3 that the standard deviation onλ−1 is large. This is a consequence of the largest

count distribution time interval (524µs) being too small compared to the value ofλ−1. The next 2 sections
will use the same method of non-overlapping time intervals but for larger time intervals.

7.2 60 non-overlapping time gates in geometric progressionfrom 1 ns to 1048µs

Using 60 non overlapping time gates increasing in size usinga geometric progression from 1 ns to 1048µs,
we get the results in Table 4.
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Figure 5: Feynman varianceY2F(T ), fit by Eq. 18

Simulation M M range 1/λ [µs]

1 0.80752 [0.596191:1.018848] 171±43
2 1.499243 [0.829102:2.169385] 325±130
3 1.577588 [0.807837:2.347363] 344±147
4 0.807153 [0.595874:1.018457] 171±43
5 1.185229 [0.790601:1.579883] 246±78
6 0.995776 [0.661304:1.330225] 211±68
7 1.110181 [0.656763:1.563574] 267±97
8 0.74939 [0.546289:0.95249] 162±42
9 2.592871 [0.583569:4.602246] 525±302

Table 3: Multiplication for 9 different simulations using 57 non-overlapping time gates in geometric pro-
gression from 1 ns to 524µs.

Table 4 shows values ofλ−1 that fluctuate much less than in the previous case. The standard deviations
on λ−1 are much smaller as well. In the next section, we will increase the largest count distribution time
gate to be 2096µs, which is about 10 times the value ofλ−1.

7.3 63 non-overlapping time gates in geometric progressionfrom 1 ns to 2096µs

Using 63 non-overlapping time gates increasing in width geometrically from 1 ns to 2096µs, we get the
results in Table 5.

The values ofλ−1 shown in Table 5 are well behaved, all the values ofλ−1 are within a small interval.
The multiplication ranges from the last 3 tables are plottedin Fig. 6.

We observe in Fig. 6 that 9 out of 9 multiplication intervals for the 57 gate case encompass the the right
value M=1, 5 out of 9 for the 60 gate case, and 8 out of 9 for the 63gate case. These 3 ratios are close to
what we would expect for a 1 sigma confidence interval. This result is much better than what we observed
in Fig. 4 for the overlapping time gates.
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Simulation M M range 1/λ [µs]

1 1.290674 [1.036377:1.544971] 302±72
2 1.285400 [1.039282:1.531494] 304±68
3 1.025391 [0.846265:1.204492] 231±49
4 1.290674 [1.036377:1.544971] 302±72
5 1.138916 [0.959668:1.318213] 227±47
6 1.026904 [0.840137:1.213623] 237±53
7 0.915308 [0.762134:1.068506] 192±42
8 1.328662 [1.055615:1.601758] 319±78
9 1.137842 [0.962427:1.313281] 228±46

Table 4: Multiplication for 9 different simulations using 60 non-overlapping time gates in geometric pro-
gression from 1 ns to 1048µs.

Simulation M M range 1/λ [µs]

1 1.011475 [0.881812:1.141113] 213±44
2 1.069775 [0.933667:1.205908] 239±48
3 1.037328 [0.877368:1.195288] 254±61
4 1.011841 [0.882178:1.141504] 213±44
5 1.091406 [0.950903:1.231934] 244±50
6 0.951025 [0.822119:1.079932] 203±45
7 0.893359 [0.763599:1.02312] 199±46
8 1.022412 [0.87981:1.16499] 236±52
9 1.152954 [1.021411:1.284473] 229±43

Table 5: Multiplication for 9 different simulations using 63 non-overlapping time gates in geometric pro-
gression from 1 ns to 2096µs.

Another interesting point is that even though the shortest gate width interval 1 ns to 524µs has four
times the number of samples as the longest gate width interval 1 ns to 2096µs, the standard deviation on
the multiplication M is much larger. This reiterates the fact that the largest time gate width has to be much
larger than the characteristicλ−1 of the problem.

8 Conclusion

The results of this study show that analyzing the data streamusing non-overlapping time gates is an im-
provement over the current analysis using overlapping timegates. The new method enables us to compute
the standard deviation on the multiplication parameter M accurately. Also, this standard deviation on M
decreases as the largest time gate is about 10 times the characteristic time constantλ−1 of the system.

It was also shown that the analysis accurately predicts a multiplication of 1 for252C f in a non-multiplying
configuration.
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